Author:
Rkhouya Safa,Chougdali Khalid
Abstract
The purpose of this research work is to study the usage of machine learning in detecting malware. This paper presents a versatile framework, in which a dataset of more than 130000 files has been analyzed, to train and test four machine learning algorithms: Support Vector Machine, Decision Tree, Random Forest, and Gradient Boosting; The performance of each algorithm in malware classification, has been studied based on the: Accuracy, execution time, rate of false positives and false negatives, and area under the Receiver Operating Characteristic curve.
Publisher
World Organization of Applied Sciences (WOAS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献