Affiliation:
1. Saratov State Medical University named after V.I. Razumovsky, Saratov, Russia
Abstract
Acute cerebrovascular accident (ACVA) is one of the leading causes of morbidity, mortality and disability not only in the Russian Federation, but throughout the world. Various movement disorders often occur after ACVA. Recently, there has been a significant amount of interest in high-tech hardware rehabilitation methods, which can be introduced into standard recovery programs for post-stroke rehabilitation of patients with motor disorders. These methods maximize the neuroplasticity processes, ensure active involvement of patients and high-intensity trainings during various recovery periods, reducing healthcare personnel burdens. Brain-computer neural interfaces for rehabilitation and improving patients’ quality of life is a promising and rapidly developing trend. The paper describes the modern pathophysiological picture of post-stroke motor disorder development, neuroplasticity mechanisms and motor rehabilitation effects. Great attention is paid to brain-computer neural interfaces as a means of patient-hardware communication. Technological devices make such communication possible as they use signals of human brain activity, and the patient receives feedback in the form of visual or tactile information. The paper presents current data on the possibilities of this technology in the post-stroke rehabilitation of patients with motor disorders. The authors describe the results of the studies conducted with the help of brain-computer neural interfaces. The theoretical and clinical efficacy of this technology was determined. Keywords: neuroplasticity, rehabilitation, motor disorders, stroke, brain-computer interface.
Publisher
Ulyanovsk State University
Reference40 articles.
1. Insul't u vzroslykh: tsentral'nyy parez verkhney konechnosti [Stroke in adults: central paresis of the upper limb]. Moscow; 2017. 106 (in Russian).
2. Belova A.N., Prokopenko S.V. Neyroreabilitatsiya [Neurorehabilitation]. 3-e izd., pererab. i dop. Moscow: Antidor; 2010. 1288 (in Russian).
3. Hatem S.M., Saussez G., Della Faille M., Prist V., Zhang X., Dispa D., Bleyenheuft Y. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Frontiers in human neuroscience. 2016; 10: 442.
4. Lawrence E.S., Coshall C., Dundas R., Stewart J., Rudd A.G., Howard R. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001; 32 (6): 1279–1284.
5. Bach-Y-Rita P. Theoretical and practical considerations in the restoration of function after stroke. Top Stroke Rehabilitation. 2001; 8 (3): 1–15.