Liquid Crystalline Electro-Optical Modulator of Submegahertz Range

Author:

Pozhidaev E. P.ORCID,Kuznetsov A. V.ORCID,Kaznacheev A. V.ORCID,Torgova S. I.ORCID,Tkachenko T. P.ORCID

Abstract

A liquid crystalline (LC) electro-optical modulator providing an electro-optical response time up to 400 nanoseconds with a modulation frequency up to 500 kHz has been developed. The ferroelectric liquid crystal FLC-576 obtained by us was used as the electro-optical medium of the modulator. Its helix pitch р0 is much smaller than wavelengths of visible light (р0 < 100 nm). The liquid crystal operates in the deformed helix ferroelectric mode (DHF-effect) under the action of electric fields. The controlling electric fields are less than a critical field of helix unwinding. At high frequencies of the control voltage (over 10 kHz), the heating of electro-optical cell by repolarization currents of FLC can occur up to the temperature of phase transition from ferroelectric to paraelectric phase, which leads to the cessation of electro-optical modulation. The work experimentally and theoretically examines the self-heating issues of electro-optical modulators depending on the liquid crystal layer thickness, frequency and strength of applied electric field. The heat removal conditions from the liquid crystal cell have been determined and experimentally implemented. Under these conditions the LC is in the smectic C* ferroelectric phase temperature range, which is necessary to provide electro-optical modulation in submegaherts diapason.

Publisher

Ivanovo State University

Subject

Materials Chemistry,Surfaces, Coatings and Films,Materials Science (miscellaneous),Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3