Using Time Series Models in Product Based Order Forecasting

Author:

Yücalar Fatih1ORCID

Affiliation:

1. MANİSA CELÂL BAYAR ÜNİVERSİTESİ

Abstract

Production systems play a vital role in maximizing consumer satisfaction by efficiently transforming inputs such as labor, raw materials, and capital into products or services aligned with consumer demands. An order-based production takes place in poultry meat and meat products production facilities, which face various difficulties in meeting changing customer demands and managing the supply of raw materials. To optimize production and increase customer loyalty, these facilities use strategic scheduling, considering their daily production capacity and fluctuating customer orders. In this study, estimating which customer and product type the future order quantities will come from for the relevant facilities, increasing customer satisfaction by facilitating order processes and minimizing storage costs are discussed. With this study, the number of orders was estimated, and it was aimed to meet the orders in the most accurate way. In the estimations, the order data of a poultry meat and meat products production facility between 2013 and 2021 were used. Since the order figures will change every year in cases such as the customer working with the facility, growing, or shrinking, better results have been tried to be obtained with the arrangements made on the data set used and three different data sets have been obtained. Estimation processes were performed for these three data sets using LSTM and Prophet algorithms. While the RMSE value was 7.07 in the LSTM model in experimental studies, this value was obtained as 10.96 for Prophet. In the results obtained, it was observed that the arrangements made on the data set positively affected the accuracy of the estimations and the LSTM algorithm produced better results than the Prophet algorithm.

Publisher

Bursa Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3