Global Sensitivity Analysis and Bayesian Calibration on a Series of Reflood Experiments with Varying Boundary Conditions
Author:
Affiliation:
1. Paul Scherrer Institute, Laboratory for Reactor Physics and Thermal-hydraulics (LRT), 5232 Villigen, Switzerland
2. ETH Zurich, Safety and Uncertainty Quantification, Chair of Risk, Stefano-Franscini-Platz 5, 8093 Zürich, Switzerland
Funder
Swiss Nuclear Safety Inspectorate
Publisher
Informa UK Limited
Subject
Condensed Matter Physics,Nuclear Energy and Engineering,Nuclear and High Energy Physics
Link
https://www.tandfonline.com/doi/pdf/10.1080/00295450.2021.1936879
Reference28 articles.
1. Development and assessment of a method for evaluating uncertainty of input parameters
2. “PREMIUM: A Benchmark on the Quantification of the Uncertainty of the Physical Models in System Thermal-Hydraulic Codes Methodologies and Data Review,” NEA/CSNI/R(2016)9, Organisation for Economic Co-operation and Development/Nuclear Energy Agency (2016); www.oecd-nea.org (current as of Jan. 6, 2021).
3. D. WICAKSONO, “Bayesian Uncertainty Quantification of Physical Models in Thermal-Hydraulics System Codes,” PhD Thesis, Swiss Federal Institute of Technology, Lausanne; https://infoscience.epfl.ch/record/253113?ln=en (Feb 23, 2018).
4. Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian Process, Part 2: Application to TRACE
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Global Sensitivity Analysis for Segmented Inverse Uncertainty Quantification in the Safety Analysis of Nuclear Power Plants;Annals of Nuclear Energy;2024-12
2. Quantitative evaluation of uncertain parameters for thermal-hydraulic experiments based on the COSINE code;Nuclear Engineering and Technology;2024-07
3. Functional PCA and deep neural networks-based Bayesian inverse uncertainty quantification with transient experimental data;Computer Methods in Applied Mechanics and Engineering;2024-02
4. Scalable Inverse Uncertainty Quantification by Hierarchical Bayesian Modeling and Variational Inference;Energies;2023-11-20
5. Preliminary development of machine learning-based error correction model for low-fidelity reactor physics simulation;Annals of Nuclear Energy;2023-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3