Intrusion Detection System with an Ensemble Learning and Feature Selection Framework for IoT Networks
Author:
Affiliation:
1. Department of ECE, St. Joseph’s Institute of Technology, Chennai 600119, India
Publisher
Informa UK Limited
Subject
Electrical and Electronic Engineering,Computer Science Applications,Theoretical Computer Science
Link
https://www.tandfonline.com/doi/pdf/10.1080/03772063.2022.2098187
Reference49 articles.
1. Building an efficient intrusion detection system based on feature selection and ensemble classifier
2. Hybridizing genetic algorithm and grey wolf optimizer to advance an intelligent and lightweight intrusion detection system for IoT wireless networks
3. C. Samuel, B. M. Alvarez, E. G. Ribera, P. P. Ioulianou, and V. G. Vassilakis, “Performance evaluation of a wormhole detection method using round-trip times and hop counts in RPL-based 6LoWPAN networks,” in 12th International Symposium on Communication Systems, Networks and Digital Signal Processing, Porto, 2020, pp. 1–6.
4. An Adaptive Ensemble Machine Learning Model for Intrusion Detection
5. Detecting botnet by using particle swarm optimization algorithm based on voting system
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimized Ensemble Learning Models Based on Clustering and Hybrid Deep Learning for Wireless Intrusion Detection;IETE Journal of Research;2024-06-24
2. OPSMOTE-ML: an optimized SMOTE with machine learning models for selective forwarding attack detection in low power and lossy networks of internet of things;Cluster Computing;2024-06-08
3. OOA-modified Bi-LSTM network: An effective intrusion detection framework for IoT systems;Heliyon;2024-04
4. A feed forward deep neural network model using feature selection for cloud intrusion detection system;Concurrency and Computation: Practice and Experience;2023-12-27
5. Intrusion detection system using metaheuristic fireworks optimization based feature selection with deep learning on Internet of Things environment;Journal of Forecasting;2023-10-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3