A modeling assessment of contaminant fate in the Bay of Quinte, Lake Ontario: Part 1. Metals

Author:

Gandhi Nilima1,Diamond Miriam L.12,Razavi Roshanak1,Bhavsar Satyendra P.13,Hodge Erin M.24

Affiliation:

1. Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5

2. Department of Geography, University of Toronto, Toronto, Ontario, M5S 3G3

3. Current address: Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, 125 Resources Road, Toronto, Ontario M9P 3V6

4. Current address: Ontario Agency for Health Protection and Promotion, 480 University Avenue, Suite 300, Toronto, Ontario M5A 4H8

Abstract

A mass balance model of contaminant fate-transport was used to assess the fate of four metals: As, Cd, Cu and Zn, in the Bay of Quinte for hydrologic conditions and loadings in 2000. Results were compared with previous model results of 1988. The model was based on the QWASI (Quantitative Water Air Sediment Interaction) approach and the fugacity/aquivalence concept. The Bay was divided into five geographic segments based on hydrodynamics and chemical loadings. The model identified tributaries and Lake Ontario as the major sources of metal loadings to the Upper and Lower Bays, respectively. Metal concentrations in water decreased by 40–75% in the tributaries between May 1988 and 2000, which resulted in decreased metal concentrations that were, in 2000, all below the Provincial Water Quality Objectives. Measured sediment concentrations exceeded the Lowest Effect Levels (LEL) for all metals at many sites in the Upper and Lower Bays. Using 2000 metal loadings from tributaries and Lake Ontario, the model predicted that sediment concentrations will meet or come within 20% of LELs for all metals in segment 1, As in segments 2 and 3, and Zn in segment 3 within 40 years. Although the model predicted that sediment concentrations would decline to the LEL for all segments within 26 (Zn) to 54 (Cu) years, evidence suggests that benthos are now not impaired by ambient sediment concentrations (excluding “hot spots”). Reducing sediment concentrations faster is expected to be very difficult because their loadings originate from diffuse sources in the watersheds of tributaries and Lake Ontario.

Publisher

Michigan State University Press

Subject

Management, Monitoring, Policy and Law,Ecology,Aquatic Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3