Checking the pulse of Lake Ontario's microbial-planktonic communities: A trophic transfer hypothesis

Author:

Munawar M.1,Fitzpatrick M.1,Munawar I. F.2,Niblock H.1

Affiliation:

1. Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6

2. Plankton Canada, Burlington, Ontario, Canada

Abstract

The structure and function of the microbial food web of Lake Ontario was assessed at 15 stations distributed across 4 transects during the spring and summer of 2003. This was the first major binational study of Lake Ontario since the Lake Ontario Trophic Transfer initiative of 1990. The microbial loop (bacteria, autotrophic picoplankton, heterotrophic nanoflagellates (HNF) and ciliates) and phytoplankton, were enumerated microscopically in addition to measurements of chlorophyll a, size fractionated primary productivity (14C) and bacterial growth (3H). HNF dominated the total biomass in spring (≈300 mg m−3) and summer (≈1250 mg m−3). The size of the organic carbon pool increased from ≈90 mg C m−3 in spring to ≈270 mg C m−3 with HNF contributing 36% of the total organic carbon in the spring and 52% in the summer; however the net balance of the organic carbon pool shifted from autotrophic in the spring to heterotrophic in the summer. The available evidence suggests that HNF are a poor quality food resource for zooplankton and it is likely that the carbon sequestered by HNF is not available to higher trophic levels resulting in dietary stress for planktivores. The implications of high HNF for both organic carbon cycling and maintaining healthy fisheries needs further research. Independent observations show that oligotrophic conditions prevail as evidenced by low phosphorus, low chlorophyll a, low plankton and high water clarity. Such conditions have been generally regarded as the gold standard for managing healthy lakes. Lake Ontario is oligotrophic and healthy from a water quality perspective, but from a food web dynamics point of view, Lake Ontario appears to be unhealthy due to the dominance of HNF, low zooplankton and poor quality of food available to higher trophic levels. We hypothesize that the lake's poor health is attributable to inefficient energy transfer from lower to higher trophic levels. The traditional understanding of trophic state based mainly on water quality criteria needs to be broadened by the inclusion of food web and fisheries based metrics.

Publisher

Michigan State University Press

Subject

Management, Monitoring, Policy and Law,Ecology,Aquatic Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3