On Mining Movement Pattern from Mobile Users

Author:

Taniar David1,Goh John1

Affiliation:

1. School of Business Systems, Monash University, Clayton, Vic, Australia

Abstract

In the era in which activities performed by mobile users are tracked through various sensing mechanisms, the movement data collected through these sensors is submitted into a data mining algorithm in order to determine the movement pattern. The movement pattern refers to the pattern that mobile users generally take to move from one base location to another base location through multiple intermediate locations. This paper provides a proposal and case study on how the movement pattern can be extracted from mobile users through transforming the user movement database to the location movement database and subsequently transferred to an algorithm Apriori-like movement pattern (AMP) and movement tree (M-tree). The result is a list of sequences in which mobile users frequently go through that which satisfies min-support and min-confidence. The result of this movement pattern mining exercise opens up a new future for the prediction of the movement for the individual mobile user.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contact Tracing With District-Based Trajectories;International Journal of Data Warehousing and Mining;2023-04-07

2. Changes in mobility amid the COVID-19 pandemic in Sapporo City, Japan: An investigation through the relationship between spatiotemporal population density and urban facilities;Transportation Research Interdisciplinary Perspectives;2023-01

3. Efficient Trajectory Clustering of Movements of Moving Objects;Lecture Notes in Computer Science;2023

4. k-Level Contact Tracing Using Mesh Block-Based Trajectories for Infectious Diseases;Advanced Information Networking and Applications;2021

5. The Model-Driven Architecture for the Trajectory Data Warehouse Modeling;International Journal of Data Warehousing and Mining;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3