A Perspective on Information Fusion Problems

Author:

Madan Rabinder N.1,Rao Nageswara S. V.2

Affiliation:

1. Office of Naval Research, Arlington, VA, USA

2. Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

Information fusion problems have a rich history spanning four centuries and several disciplines as diverse as political economy, reliability engineering, target tracking, bioinformatics, forecasting, distributed detection, robotics, cyber security, nuclear engineering, distributed sensor networks, and others. Over the past decade, the area of information fusion has been established as a discipline by itself with several contributions to its foundations as well as applications. In a basic formulation of the information fusion problem, each component is characterized by a probability distribution. The goal is to estimate a fusion rule for combining the outputs of components to achieve a specified objective such as better performance or functionality compared to the components. If the sensor error distributions are known, several fusion rule estimation problems have been formulated and solved using deterministic methods. In the area of pattern recognition a weighted majority fuser was shown to be optimal in combining outputs from pattern recognizers under statistical independence conditions. A simpler version of this problem corresponds to the Condorcet Jury theorem proposed in 1786. This result was rediscovered since then in other disciplines including by von Neumann in 1959 in building reliable computing devices. The distributed detection problem, studied extensively in the target tracking area, can be viewed as a generalization of the above two problems. In these works, the underlying distributions are assumed to be known, which is quite reasonable in the areas these methods are applied. In a different formulation, we consider estimating the fuser based on empirical data when no information is available about the underlying distributions of components. Using the empirical estimation methods, this problem is shown to be solvable in principle, and the fuser performance may be sharpened based on the specific formulation. The isolation fusers perform at least as good as best component, and the projective fusers perform as good as best combination of components. In a special case of function estimation, each component could be a potential function estimator, radial basis function, nearest neighbor estimator, regressogram, kernel estimator, regression tree or another estimator. A projective fuser based on a nearest neighbor concept has been proposed based on Voronoi regions in this case. Under fairly general smoothness and non-smoothness conditions on the individual estimators, the expected fuser error is close to optimal with a specified probability. This result is purely sample-based and distribution-free in that it does not require the knowledge of underlying distributions and can be computed only using measurements.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3