Artificial neural networks as alternative tool for minimizing error predictions in manufacturing ultradeformable nanoliposome formulations
Author:
Affiliation:
1. Department of Industrial Management Science, School of Engineering, Universidad de Sevilla, Seville, Spain;
2. Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
Publisher
Informa UK Limited
Subject
Organic Chemistry,Drug Discovery,Pharmaceutical Science,Pharmacology
Link
https://www.tandfonline.com/doi/pdf/10.1080/03639045.2017.1386201
Reference26 articles.
1. Applying the taguchi method to optimize sumatriptan succinate niosomes as drug carriers for skin delivery
2. A simple Ultraviolet spectrophotometric method for the determination of etoricoxib in dosage formulations
3. Artificial neural network as an alternative to multiple regression analysis in optimizing formulation parmaeters of cytarabine liposomes
4. Performance comparison of neural network training algorithms in modeling of bimodal drug delivery
5. Pharmaceutical Drug Design Using Dynamic Connectionist Ensemble Networks
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning;International Journal of Pharmaceutics;2023-11
2. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles;Scientific Reports;2023-10-21
3. State-of-the-art review of neural network applications in pharmaceutical manufacturing: current state and future directions;Journal of Intelligent Manufacturing;2023-09-20
4. Artificial neural network–based inference of drug–target interactions;Nanotechnology Principles in Drug Targeting and Diagnosis;2023
5. Artificial Intelligence and Its Applications in Drug Discovery, Formulation Development, and Healthcare;Computer Aided Pharmaceutics and Drug Delivery;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3