A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting
Author:
Affiliation:
1. Department of Microdata Analysis, Dalarna University, Falun, Sweden
2. Department of Energy Technology, Dalarna University, Falun, Sweden
3. Department of Computer Engineering, Dalarna University, Falun, Sweden
Publisher
Informa UK Limited
Subject
Marketing,Management Science and Operations Research,Strategy and Management,Management Information Systems
Link
https://www.tandfonline.com/doi/pdf/10.1080/01605682.2020.1843976
Reference54 articles.
1. A new prediction strategy for price spike forecasting of day-ahead electricity markets
2. Day-Ahead Deregulated Electricity Market Price Forecasting Using Recurrent Neural Network
3. Exploiting the past and the future in protein secondary structure prediction
4. Learning long-term dependencies with gradient descent is difficult
Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Day-Ahead electricity price forecasting using a CNN-BiLSTM model in conjunction with autoregressive modeling and hyperparameter optimization;International Journal of Electrical Power & Energy Systems;2024-10
2. Multi-step ahead dissolved oxygen concentration prediction based on knowledge guided ensemble learning and explainable artificial intelligence;Journal of Hydrology;2024-06
3. Identification of Airline Turbulence Using WOA-CatBoost Algorithm in Airborne Quick Access Record (QAR) Data;Applied Sciences;2024-05-23
4. Modified artificial neural network based on developed snake optimization algorithm for short-term price prediction;Heliyon;2024-03
5. A Comparative Study of Electricity Price Prediction and Deep Learning Models;Proceedings of the International Conference on Computer Vision and Deep Learning;2024-01-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3