Dose-Response Curves in Chemical Carcinogenesis

Author:

Waddell William J.1

Affiliation:

1. Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY

Abstract

Extrapolation from studies of chemical carcinogenicity in rodents, at high doses, to humans, at the typically low doses to which we are exposed, has been one of the most controversial issues in toxicology. Many chemical carcinogenesis experiments currently are evaluated on a linear scale for dose. Log dose has been the standard for decades in pharmacology and toxicology for noncancer toxicities and there is no reason to think that it should not apply to chemical carcinogenesis. Furthermore, log dose is consistent with fundamental principles of chemistry. Direct comparisons of linear and logarithmic scales for dose illustrate the deceptive nature of linear plots for dose; low doses, which is where our interest lies in comparing human exposures, are compressed beyond evaluation by a linear scale. Unequivocal thresholds for carcinogenicity are shown when the dose-response curves for animal studies done at high doses are evaluated on a log scale for dose. This observation now raises the issue of the relevance to human exposures of these high-dose experiments in animals. Studies analyzed by this log dose to linear response procedure demonstrate that the thresholds from animal experiments can be used to calculate safety factors for human exposure and that humans are more resistant than animals to carcinogenesis from chemicals.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Use of less-than-lifetime (LTL) durational limits for nitrosamines: Case study of N-Nitrosodiethylamine (NDEA);Regulatory Toxicology and Pharmacology;2021-07

2. Material Risks of Homeopathic Medicinal Products: Regulatory Frameworks, Results of Preclinical Toxicology, and Clinical Meta-Analyses and Their Implications;Complementary Medicine Research;2020-07-01

3. The use of systems biology in chemical risk assessment;Current Opinion in Toxicology;2019-06

4. Naphthalene DNA adduct formation and tolerance in the lung;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2019-01

5. Mutagenic activities of biochars from pyrolysis;Science of The Total Environment;2017-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3