Deep learning for real-time social media text classification for situation awareness – using Hurricanes Sandy, Harvey, and Irma as case studies
Author:
Affiliation:
1. Department of Geography and Geoinformation Science, George Mason Univeristy, Fairfax, VA, USA
2. Department of Geography, University of Wisconsin–Madison, Madison, WI, USA
3. Ankura, Washington, DC, USA
Funder
Division of Computer and Network Systems
Publisher
Informa UK Limited
Subject
General Earth and Planetary Sciences,Computer Science Applications,Software
Link
https://www.tandfonline.com/doi/pdf/10.1080/17538947.2019.1574316
Reference43 articles.
1. Text Mining in Social Networks
2. Aipe, A., N. S. Mukuntha, A. Ekbal, and S. Kurohashi. 2018. “Deep Learning Approach towards Multi-label Classification of Crisis Related Tweets.” In Proceedings of the 15th ISCRAM Conference, edited by Kees Boersma and Brian Tomaszewski, Rochester, NY, USA May 2018.
3. Caragea, C., A. Silvescu, and A. H. Tapia. 2016, May. “Identifying Informative Messages in Disaster Events Using Convolutional Neural Networks.” International Conference on Information Systems for Crisis Response and Management, 137–147.
4. Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study
Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Information retrieval and classification of real-time multi-source hurricane evacuation notices;International Journal of Disaster Risk Reduction;2024-09
2. SatCoBiLSTM: Self-attention based hybrid deep learning framework for crisis event detection in social media;Expert Systems with Applications;2024-09
3. Enhanced earthquake impact analysis based on social media texts via large language model;International Journal of Disaster Risk Reduction;2024-07
4. Real-Time Classification Model of Public Emergencies Using Fusion Expansion Network;Journal of Organizational and End User Computing;2024-06-05
5. Multi-class multi-label classification of social media texts for typhoon damage assessment: a two-stage model fully integrating the outputs of the hidden layers of BERT;International Journal of Digital Earth;2024-05-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3