Factors limiting phytoplankton productivity in 49 shallow reservoirs of North Côte d'Ivoire (West Africa)

Author:

Arfi R.1,Bouvy M.2,Cecchi P.2,Pagnao M.1,Thomas S.2

Affiliation:

1. 1 Institut de Recherche pour le Developpement (IRD), BP 1386, Dakar, Senegal

2. Centre IRD, 911 avenue Agropolis, 34032 Montpellier cedex, France

Abstract

Abstract Several hundred ranching reservoirs are scattered in North Côte d'Ivoire, where they have an increasing economical importance as water resources during the dry season. To obtain a synoptic view of their limnological characteristics and to identify key factors limiting algal productivity, 49 of these shallow reservoirs were sampled once in 1997 at the end of the dry season. They showed low conductivity (range 40-230 µS cm-1 ) and low pH (range 5.1-7.3), and lakes deeper than 2 m were stratified. Most lakes had low nutrient concentrations (median: 0.09, 3.49 and 0.44 µM, for NO3-N, NH4-N and PO4-P, respectively). They were very turbid, with most of Secchi depths ranging between 0.1 and 0.4 m, and had high seston weights (median, 45 mg l-1). Many lakes had high chlorophyll concentrations (median, 106 µg l-1 ), and some of them featured algal blooms, while many lakes had primary production value <1000 mg C m-2 d-1. Algae of size >10 µm represented about 50 percent of the chlorophyll biomass and phytoplankton production. Classification on hydrological and particle data identified five groups based on depth, turbidity and productivity. During the dry season, the initial nutrient pulse linked to the annual flood is exhausted. At this time of the year, phytoplankton production was nitrate limited in some lakes, while in some others, phosphorus was limiting. Deep sites (>2 m) were less turbid and less productive than shallow ones (<2 m). In shallow unstratified lakes showing a nutrient-rich bottom layer, easy vertical mixing allow a regular enhancement of the algal productivity. In deeper and stratified lakes, nutrient enrichment only occurs when high intensity winds induce vertical mixing, and their productivity is directly related to these episodic nutrient pulses.

Publisher

Michigan State University Press

Subject

Management, Monitoring, Policy and Law,Ecology,Aquatic Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3