Physiological factors contributing to the species-specific sensitivity of four estuarine microalgal species exposed to the herbicide atrazine

Author:

DeLorenzox Marie E.12,Leatherbury Meagan3,Weiner Jeannette A.14,Lewitus Alan J.56,Fulton Michael H.1

Affiliation:

1. US Department of Commerce/NOAA, National Ocean Service, Coastal Center for Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412

2. University of South Carolina, Department of Environmental Health Sciences, Norman J. Arnold School of Public Health, Columbia, SC 29208

3. Bard College, Annandale-on-Hudson, NY 12504

4. Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412

5. Belle W. Baruch Institute for Marine Biology and Coastal Research, University of South Carolina, Baruch Marine Laboratory, P.O. Box 1630, Georgetown, SC 29442

6. Marine Resources Research Institute, SC Department of Natural Resources, 217 Ft. Johnson Road, Charleston, SC 29412

Abstract

Algal species vary considerably in sensitivity to the commonly used herbicide atrazine, and it is hypothesized that several factors may contribute to species-specific sensitivity. In this study four estuarine microalgal species, a planktonic chlorophyte (Dunaliella tertiolecta), a benthic chlorophyte (Ankistrodesmus sp.), a cryptophyte (Storeatula major) and a dinoflagellate (Amphidinium operculatum), were exposed to atrazine to determine toxicity and identify factors that might influence species sensitivity. Atrazine effects were examined at the population (cell density, primary productivity and biomass), cellular (biovolume), and subcellular (pigment composition, protein concentration and lipid concentration) levels. Atrazine significantly decreased cell density, productivity rate, biomass and biovolume in all the algal populations tested at atrazine concentrations ≥ 12.5 μ g l−1. Toxicity values (96 h EC50 values) for the four species ranged from 11.87 to 146.71 μ g l−1. Species sensitivity rankings varied with endpoint measured. Overall, Ankistrodesmus sp. was the most sensitive species followed by Storeatula, Dunaliella and Amphidinium. Cellular biovolume was a significantly more sensitive test endpoint for Amphidinium, chlorophyll a was a significantly more sensitive test endpoint for Ankistrodesmus sp., and phototrophic carbon assimilation was a significantly more sensitive test endpoint for both Storeatula and Amphidinium. Algal subcellular responses to atrazine were also species dependent. Chlorophyll a concentration per cell decreased in the green algae, increased in Amphidinium and did not change in Storeatula. Total lipids per cell increased in Storeatula, decreased in Amphidinium and did not change in the green algae. Ankistrodesmus sp. pigments were not significantly altered after atrazine exposure; however selected Amphidinium pigments increased per cell, and selected Dunaliella and Storeatula pigments decreased per cell in the atrazine treatments. Atrazine significantly reduced cellular biovolume in all test species. Species with smaller biovolumes and less chlorophyll a per cell tended to be more sensitive to atrazine exposure based on population growth rate.

Publisher

Michigan State University Press

Subject

Management, Monitoring, Policy and Law,Ecology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3