Modelling within Host Parasite Dynamics of Schistosomiasis

Author:

Chiyaka Edward T.1,Magombedze Gesham1,Mutimbu Lawrence1

Affiliation:

1. Modelling Biomedical Systems Research Group, Department of Applied Mathematics, National University of Science and Technology, P.O. Box AC 939 Ascot, Bulawayo, Zimbabwe

Abstract

Schistosomiasis infection is characterized by the presence of adult worms in the portal and mesenteric veins of humans as part of a complex migratory cycle initiated by cutaneous penetration of the cercariae shed by infected freshwater snails. The drug praziquantel is not always effective in the treatment against schistosomiasis at larvae stage. However, our simulations show that it is effective against mature worms and eggs. As a result, the study and understanding of immunological responses is key in understanding parasite dynamics. We therefore introduce quantitative interpretations of human immunological responses of the disease to formulate mathematical models for the within-host dynamics of schistosomiasis. We also use numerical simulations to demonstrate that it is the level of T cells that differentiates between either an effective immune response or some degree of infection. These cells are responsible for the differentiation and recruitment of eosinophils that are instrumental in clearing the parasite. From the model analysis, we conclude that control of infection is much attributed to the value of a functionf, a measure of the average number of larvae penetrating a susceptible individual having hatched from an egg released by an infected individual. This agrees with evidence that there is a close association between the ecology, the distribution of infection and the disease.

Funder

African Mathematics Millennium Science Initiative

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3