1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P. … Zheng, X. (2016). Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16) (pp. 265–284).
2. Bahdanau, D., Cho, K. & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In Proceedings of ICLR Conference Track, San Diego, CA.
3. Bahdanau, D., Murty, S., Noukhovitch, M., Nguyen, T. H., de Vries, H. & Courville, A. (2018). Systematic generalization: What is required and can it be learned? arXiv preprint arXiv:1811.12889.
4. Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C., Song, F., Ballard, A., Gilmer, J., Dahl, G., Vaswani, A., Allen, K., Nash, C., Langston, V. … Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261.
5. Besold, T. R., d’Avila, A., Bader, S., Bowman, H., Domingos, P., Hitzler, P., Kühnberger, K., Lamb, L. C., Lowd, D., Machado, P., de Penning, L., Pinkas, G., Poon, H. & Zaverucha, G. (2017). Neural-symbolic learning and reasoning: A survey and interpretation. arXiv preprint arXiv:1711.03902.