1. Efficient synthesis of 5-fluoroalkylated 1H-1,2,3-triazoles and application of the bromodifluoromethylated triazole to the synthesis of novel bicyclic gem-difluorinated 1H-pyrano[3,4-d][1,2,3]-triazol-4-one compounds
2. (a) A. Rani, G. Singh, A. Singh, U. Maqbool, G. Kaur, and J. Singh, “CuAAC-Ensembled 1, 2, 3-Triazole-Linked Isosteres as Pharmacophores in Drug Discovery,” RSC Advances 10, (2010): 5610–35. (b)
3. T. Ince, R. Serttas, B. Demir, H. Atabey, N. Seferoglu, S. Erdogan, E. Sahin, S. Erat, and Y. Nural, “Polysubstituted Pyrrolidine Linked to 1,2,3-Triazoles: Synthesis, Crystal Structure, DFT Studies, Acid Dissociation Constant, Drug-Likeness, and Anti-Proliferative Activity,” Journal of Molecular Structure 1217, (2020): 128400. (c)X. Jiang, X. Hao, L. Jing, G. Wu, D. Kang, X. Liu, and P. Zhan, Recent Applications of Click Chemistry in Drug Discovery, Expert Opinion on Drug Discovery 14, (2019): 779–89. (d)N. Singh, S. K. Pandey, and R. P. Tripathi, “Regioselective [3 + 2] Cycloaddition of Chalcones with a Sugar Azide: Easy Access to 1-(5-Deoxy-d-xylofuranos-5-yl)-4,5-disubstituted-1H-1,2,3-triazoles,” Carbohydrate Research 345, (2010): 1641–48.
4. (a) J. Dinges and C. Lamberth, Bioactive Heterocyclic Compounds Classes: Pharmaceuticals Weinheim (Germany: Wiley-VCH, 2012). (b)
5. G. Knauf-Beiter, C. Fleischhacker, L. Mittermeier, and R. Ligouri, Brighton Crop Protection Conference Pests and Diseases, vol. 2. (1992), 651–56. (c)J. A. Builla, J. J. Vaquero, and J. Barluenga, Modern Heterocyclic Chemistry (Weinheim, Germany: Wiley-VCH, 2011). (d)P. M. Habib, B. R. Raju, V. Kavala, C. Kuo, and C. Yao, Catalyst-Free 1,3-Dipolar Cycloaddition of 3-Nitrochromen with Sodium Azide: A Facile Method for the Synthesis of 4-Aryl-1,4-dihydrochromeno[4,3-d][1,2,3]triazole Derivatives,” Tetrahedron 65, (2009): 5799–04.