Report for ISSMGE TC309/TC304/TC222 and ASCE Geo-Institute Risk Assessment and Management Committee Fourth Machine Learning in Geotechnics Dialogue on “Machine Learning Supremacy Projects”

Author:

Leung Andy Y.F.1ORCID,Phoon Kok-Kwang2ORCID,Xiao Te3ORCID,Shuku Takayuki4ORCID,Ching Jianye5ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China

2. Information Systems Technology and Design/Architecture and Sustainable Design, Singapore University of Technology and Design, Singapore, Singapore

3. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, People’s Republic of China

4. Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan

5. Department of Civil Engineering, National Taiwan University, Taipei, Taiwan

Publisher

Informa UK Limited

Reference38 articles.

1. AGS. 2022. “Electronic Transfer of Geotechnical and Geoenvironmental Data AGS4 Edition 4.1.1.” https://www.ags.org.uk/content/uploads/2022/02/AGS4-v-4.1.1-2022.pdf.

2. Ching, J. 2024. Bayesian Machine Learning in Geotechnical Site Characterization. Boca Raton: CRC Press.

3. Eurocode 7. 2004. Geotechnical Design – Part 1: General Rules. Brussels: European Committee for Standardisation.

4. Editorial

5. Hayashi K. 2022. “Application of Neural Network to Analysis and Interpretation of Geophysical Data.” Proceedings of the 147th SEGJ Conference (in Japanese).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Future of Machine Learning in Geotechnics (FOMLIG), 5–6 Dec 2023, Okayama, Japan;Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards;2024-01-02

2. Correction;Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards;2024-01-02

3. Special Issue on “Data-Centric Geotechnics for Practice”;Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards;2024-01-02

4. Digging Deeper: The Role of Big Data Analytics in Geotechnical Investigations;E3S Web of Conferences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3