Predicting New Venture Gestation Outcomes With Machine Learning Methods
Author:
Affiliation:
1. University of St Gallen, Swiss Institute for Small Business & Entrepreneurship, Switzerland
2. Zurich University of Applied Sciences, School of Management & Law, Switzerland
Publisher
Informa UK Limited
Subject
Management of Technology and Innovation,Strategy and Management,General Business, Management and Accounting
Link
https://www.tandfonline.com/doi/pdf/10.1080/00472778.2022.2082453
Reference87 articles.
1. Predicting new venture survival: A Twitter-based machine learning approach to measuring online legitimacy
2. No particular action needed? A necessary condition analysis of gestation activities and firm emergence
3. Modeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case Study
4. The Value of Human and Social Capital Investments for the Business Performance of Startups
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Learning from Yesterday: Predicting early-stage startup success for accelerators through content and cohort dynamics;Journal of Business Venturing Insights;2024-11
2. Green Pioneers in the Maze of Sustainability: Machine Learning Insights into the Drivers of Eco-Entrepreneurship;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15
3. The role of institutions in early-stage entrepreneurship: An explainable artificial intelligence approach;Journal of Business Research;2024-03
4. How does prosocial motivation influence the probability of an entrepreneur registering a new firm? An analysis of its interaction with business gestation activities;International Entrepreneurship and Management Journal;2024-02-09
5. Model to Predict Incoming Tech Support Demand in a Banking Company Applying CRISP-DM and Machine Learning;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3