Artificial neural networks based models for automatic performance of musical scores

Author:

Bresin Roberto

Publisher

Informa UK Limited

Subject

Music,Visual Arts and Performing Arts

Reference26 articles.

1. Battei, G.U. and Bresin, R. Analysis by sinthesis in piano performance: a study on the theme of Brahms’ Paganini‐Variationen. Proceedings of Stockholm Music Acoustic Conference 1993. Stockholm. pp.69–73. KTH.

2. Battei, G.U., Bresin, R., De Poli, G. and Vidolin, A. Automatic performance of musical scores by mean of neural nerworks: evaluation with listening tests. Proceedings of X CIM Colloquium on Musical Informatics. Milano. pp.97–101. Associazione di Informatica Musicale Italiana.

3. Bresin, R. MELODIA: a program for performance rules testing, for teaching, and for piano scores performing. Proceedings of X CIM Colloquium on Musical Informatics. Milano. pp.325–327. Associazione di Informatica Musicale Italiana.

4. Bresin, R., De Poli, G. and Ghetta, R. A fuzzy approach to performance rules. Proceedings of XI CIM Colloquium on Musical Informatics. Bologna. pp.163–168. Associazione di Informatica Musicale Italiana.

5. Bresin, R., De Poli, G. and Ghetta, R. Fuzzy performance rules. Proceedings of the KTH Symposium on “Grammars far music performance”. Stockholm. pp.15–36. KTH.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Artificial Intelligence for Advancing Performance Processes and Events in Io3MT;Lecture Notes in Computer Science;2024

2. Research in Computational Expressive Music Performance and Popular Music Production: A Potential Field of Application?;Multimodal Technologies and Interaction;2023-01-31

3. Performance Creativity in Computer Systems for Expressive Performance of Music;Handbook of Artificial Intelligence for Music;2021

4. Music-Driven Animation Generation of Expressive Musical Gestures;Companion Publication of the 2020 International Conference on Multimodal Interaction;2020-10-25

5. This time with feeling: learning expressive musical performance;Neural Computing and Applications;2018-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3