Optimized Forecasting Approach for Scheduling Wind Generation Plants and Maximizing Renewable Energy Utilization

Author:

Kumar Rahul1,Sathiyasekar K.2,Nagabhooshanam N.345,Azam Mohammed6,Mukherjee Sarbojit7,Salunkhe Satish S.8,L Natrayan9,Anita S.10

Affiliation:

1. Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India

2. Department of EEE, K S R Institute for Engineering and Technology, Tiruchengode, Namakkal, India

3. Department of Mechanical Engineering, Aditya Engineering College, Surampalem, India

4. Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University Mathura, India

5. Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India

6. Electronic and Communication Engineering, ISL College of Engineering, International, Bandlaguda, Chandrayangutta, Hyderabad, Telangana, India

7. Department of Electrical Engineering, RCC Institute of Information Technology, Beliaghata, Kolkata, India

8. Computer Engineering Department, Terna Engineering College, Mumbai University, India

9. Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India

10. Department of Electrical and Electronics, R.M.K. Engineering College, Chennai, India

Publisher

Informa UK Limited

Reference43 articles.

1. Advanced forecasting models for wind power generation: a comparative study;Smith J.;IEEE Trans. Sustainable Energ.,2023

2. Optimal scheduling of renewable energy generation plants using genetic algorithms;Chen L.;Renewable Energ.,2023

3. Machine learning-based short-term wind power forecasting: a review;Lee S.;Energies,2022

4. Demand forecasting for smart grids: a comprehensive review;Wang C.;Electric Power Syst. Res.,2022

5. Enhancing wind power forecasting using weather data fusion techniques;Zhang W.;J. Renew. Sustain. Energ.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3