Prediction of gas production potential based on machine learning in shale gas field: a case study
Author:
Affiliation:
1. Energy College, Chengdu University of Technology, Chengdu, China
2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu, China
3. Second Gas Production Plant, Southwest Oil & Gas Branch, Sinopec, China
Funder
National Natural Science Foundation of China
Publisher
Informa UK Limited
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Link
https://www.tandfonline.com/doi/pdf/10.1080/15567036.2022.2100521
Reference29 articles.
1. Feature Selection-Based ANN for Improved Characterization of Carbonate Reservoir
2. Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study
3. A Single Artificial Neural Network Model Predicts Bubble Point Physical Properties of Crude Oils
4. A Large-Scale Study for a Multi-Basin Machine Learning Model Predicting Horizontal Well Production
5. Comparative Analysis of Machine Learning Based Feature Selection Approach for Carbonate Reservoir Cementation Factor Prediction
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Comprehensive review of data-driven approaches for forecasting production from unconventional reservoirs: best practices and future directions;Artificial Intelligence Review;2024-07-22
2. An improved convolutional neural network for predicting porous media permeability from rock thin sections;Gas Science and Engineering;2024-07
3. Pressure Transient and Production Analysis of Fractured Vertical Wells in Tight Sand Gas Reservoirs Considering Threshold Pressure Gradient, Phase-Change Phenomenon, and Stress Sensitivity;Processes;2024-06-29
4. Analysis of the Shale Gas Production Prediction Model Based on Machine Learning Using Productivity Factors;Journal of the Korean Society of Mineral and Energy Resources Engineers;2024-04-30
5. An optimization model for monthly time-step drilling schedule under planned field production;Heliyon;2024-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3