Electromagnetic field and artificial intelligence based fault detection and classification system for the transmission lines in smart grid
Author:
Affiliation:
1. School of Electrical Engineering, MIT World Peace University Pune, Pune, Maharashtra, India
2. Testing Division, MAHATRANSCO, Pune, Maharashtra, India
Publisher
Informa UK Limited
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Link
https://www.tandfonline.com/doi/pdf/10.1080/15567036.2021.1948637
Reference31 articles.
1. Ultrafast Transmission Line Fault Detection Using a DWT-Based ANN
2. Artificial neural-network-based fault location for power distribution lines using the frequency spectra of fault data
3. Fault classification in power systems using EMD and SVM
4. ARTIFICIAL INTELLIGENCE APPLICATIONS IN RENEWABLE ENERGY SYSTEMS AND SMART GRID – SOME NOVEL APPLICATIONS
5. A Non-Contact Technique for Determining Harmonic Currents Present in Individual Conductors of Overhead Lines
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Inferring fault structures and overburden depth in 3D from geophysical data using machine learning algorithms – A case study on the Fenelon gold deposit, Quebec, Canada;Geophysical Prospecting;2024-08-16
2. Efficient detection and analysis of shunt faults in electric power distribution systems (EPDS) using DCFC and EFDC algorithm: a modeling and simulation approach;International Journal of Modelling and Simulation;2024-07-27
3. Smart grids: A comprehensive survey of challenges, industry applications, and future trends;Energy Reports;2024-06
4. Automatic Fault Location Technology of Electronic Circuit Based on Artificial Intelligence;2024 International Conference on Electrical Drives, Power Electronics & Engineering (EDPEE);2024-02-27
5. Fast-tracked aging assessment of polymer insulators in coastal environments exposed to industrial air pollutants;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2024-01-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3