Generalized wavelet neural networks for evapotranspiration modeling in India
Author:
Affiliation:
1. Department of Applied Engineering, Vignan’s Foundation for Science, Technology and Research University, Guntur, India
2. Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, India
Publisher
Informa UK Limited
Subject
Fluid Flow and Transfer Processes,Water Science and Technology,Civil and Structural Engineering,Environmental Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/09715010.2017.1327825
Reference43 articles.
1. Generalized Quadratic Synaptic Neural Networks for ETo Modeling
2. Evapotranspiration Modeling Using Second-Order Neural Networks
3. Closure to “Evapotranspiration Modeling Using Second-Order Neural Networks” by Sirisha Adamala, N. S. Raghuwanshi, Ashok Mishra, and Mukesh K. Tiwari
4. Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and drainage paper no. 56, FAO, Rome.
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Selection of best wavelet functions and decomposition levels for coupling with soft computing methods in estimating ET o in coastal and island regions;ISH Journal of Hydraulic Engineering;2024-03-06
2. Modelling monthly reference evapotranspiration estimation using machine learning approach in data-scarce North Western Himalaya region (Almora), Uttarakhand;Journal of Earth System Science;2023-08-07
3. Evaluation of Empirical and Machine Learning Approaches for Estimating Monthly Reference Evapotranspiration with Limited Meteorological Data in the Jialing River Basin, China;International Journal of Environmental Research and Public Health;2022-10-12
4. Evaluation of Machine Learning versus Empirical Models for Monthly Reference Evapotranspiration Estimation in Uttar Pradesh and Uttarakhand States, India;Sustainability;2022-05-10
5. Modelling the reference crop evapotranspiration in the Beas-Sutlej basin (India): an artificial neural network approach based on different combinations of meteorological data;Environmental Monitoring and Assessment;2022-02-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3