Optimal proportional reinsurance to minimize the probability of drawdown under thinning-dependence structure
Author:
Affiliation:
1. School of Mathematical Sciences, Nanjing Normal University, Jiangsu, P.R. China.
2. Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, Hong Kong.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Research Grants Council of the Hong Kong Special Administrative Region, China
Publisher
Informa UK Limited
Subject
Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability
Link
https://www.tandfonline.com/doi/pdf/10.1080/03461238.2018.1469098
Reference28 articles.
1. Optimal investment to minimize the probability of drawdown
2. Minimizing the probability of lifetime drawdown under constant consumption
3. Minimizing the ruin probability allowing investments in two assets: a two-dimensional problem
4. Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting
5. A note on applications of stochastic ordering to control problems in insurance and finance
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Stochastic differential investment and reinsurance game between an insurer and a reinsurer under thinning dependence structure;European Journal of Operational Research;2024-05
2. Non-zero-sum reinsurance and investment game under thinning dependence structure: mean–variance premium principle;Scandinavian Actuarial Journal;2024-01-30
3. Optimal reinsurance and investment problems to minimize the probability of drawdown;Journal of Industrial and Management Optimization;2024
4. Optimal reinsurance-investment strategy with thinning dependence and delay factors under mean-variance framework;European Journal of Operational Research;2023-12
5. Optimisation of drawdowns by generalised reinsurance in the classical risk model;Decisions in Economics and Finance;2023-05-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3