Stacking fault energy prediction for austenitic steels: thermodynamic modeling vs. machine learning
Author:
Affiliation:
1. Physical Metallurgy and Materials Design Laboratory, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
Funder
National Science Foundation
University of Pittsburgh
Publisher
Informa UK Limited
Subject
General Materials Science
Link
https://www.tandfonline.com/doi/pdf/10.1080/14686996.2020.1808433
Reference101 articles.
1. Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments
2. Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties
3. On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels
4. Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys.
5. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy
Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantitative analysis of the micromechanical behavior and work hardening in Fe-0.1C-10Mn steel via in-situ high-energy X-ray diffraction;Journal of Materials Research and Technology;2024-09
2. Prediction and Rational Design of Stacking Fault Energy of Austenitic Alloys Based on Interpretable Machine Learning and Chemical Composition;steel research international;2024-06-05
3. Aging heat treatment design for Haynes 282 made by wire-feed additive manufacturing using high-throughput experiments and interpretable machine learning;Science and Technology of Advanced Materials;2024-05-29
4. Thermodynamic Prediction and Experimental Verification of Transformation‐Induced Plasticity/Twinning‐Induced Plasticity Effects in Advanced Low‐C High‐Mn Steel at Different Deformation Temperatures;Advanced Engineering Materials;2024-05-02
5. Discovery of microsegregation-aided transformation and twinning-induced plasticity in low Mn steel through directed energy deposition of functionally graded materials;Additive Manufacturing;2024-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3