Deep reinforcement learning in production systems: a systematic literature review
Author:
Affiliation:
1. Chair of Business Informatics, Processes and Systems, University of Potsdam, Potsdam, Germany
Publisher
Informa UK Limited
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Strategy and Management
Link
https://www.tandfonline.com/doi/pdf/10.1080/00207543.2021.1973138
Reference173 articles.
1. Reinforcement learning for an intelligent and autonomous production control of complex job-shops under time constraints
2. Self-learning Processes in Smart Factories: Deep Reinforcement Learning for Process Control of Robot Brine Injection
3. Conducting systematic literature review in operations management
4. Artificial Intelligence in Advanced Manufacturing: Current Status and Future Outlook
5. Baer, Schirin, Jupiter Bakakeu, Richard Meyes, and Tobias Meisen. 2019, September. “Multi-Agent Reinforcement Learning for Job Shop Scheduling in Flexible Manufacturing Systems.” 2019 Second International Conference on Artificial Intelligence for Industries (AI4I). Laguna Hills, CA: IEEE, pp. 22–25.
Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep reinforcement learning for optimal control of induction welding process;Manufacturing Letters;2024-09
2. Deep reinforcement learning for maintenance optimization of a scrap-based steel production line;Reliability Engineering & System Safety;2024-09
3. Adaptive acquisition planning for visual inspection in remanufacturing using reinforcement learning;Journal of Intelligent Manufacturing;2024-08-27
4. A transformer-based deep reinforcement learning approach for dynamic parallel machine scheduling problem with family setups;Journal of Intelligent Manufacturing;2024-08-08
5. Deep reinforcement learning-based preventive maintenance for repairable machines with deterioration in a flow line system;Annals of Operations Research;2024-08-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3