Affiliation:
1. Institute of Cognitive Neuroscience, University College London, London, UK
Abstract
Previous studies have shown an interference of task-irrelevant numerical information with the spatial parameters of visuomotor behaviour. These findings lend support to the notion that number and space share a common metric with respect to action. Here I argue that the demonstration of the structural similarity between scales for number and space would be a more stringent test for the shared metrics than a mere fact of interference. The present study investigated the scale of number mapping onto space in a manual estimation task. The physical size of target stimuli and the magnitudes of task-irrelevant numbers were parametrically manipulated in the context of the Titchener illusion. The results revealed different scaling schemas for number and space. Whereas estimates in response to changes in stimulus physical size showed a gradual increase, the effect of number was categorical with the largest number (9) showing greater manual estimate than the other numbers (1, 3, and 7). Possible interpretations that are not necessarily incompatible with the hypothesis of shared metrics with respect to action are proposed. However, the present findings suggest that a meticulous scale analysis is required in order to determine the nature of number–space interaction.
Subject
Physiology (medical),General Psychology,Experimental and Cognitive Psychology,General Medicine,Neuropsychology and Physiological Psychology,Physiology