Effects of stereoscopic disparity on early ERP components during classification of three-dimensional objects

Author:

Pegna Alan J12,Darque Alexandra1,Roberts Mark V3,Leek E Charles34

Affiliation:

1. Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland

2. School of Psychology, University of Queensland, St Lucia, QLD, Australia

3. Wolfson Centre for Clinical and Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, UK

4. Laboratoire de Psychologie et NeuroCognition (LPNC), Université Grenoble Alpes, Saint-Martin-d’Hères, France

Abstract

This study investigates the effects of stereo disparity on the perception of three-dimensional (3D) object shape. We tested the hypothesis that stereo input modulates the brain activity related to perceptual analyses of 3D shape configuration during image classification. High-density (256-channel) electroencephalogram (EEG) was used to record the temporal dynamics of visual shape processing under conditions of two-dimensional (2D) and 3D visual presentation. On each trial, observers made image classification judgements (‘Same’/’Different’) to two briefly presented, multi-part, novel objects. On different-object trials, stimuli could either share volumetric parts but not the global 3D shape configuration and have different parts but the same global 3D shape configuration or differ on both aspects. Analyses using mass univariate contrasts showed that the earliest sensitivity to 2D versus 3D viewing appeared as a negative deflection over posterior locations on the N1 component between 160 and 220 ms post-stimulus onset. Subsequently, event-related potential (ERP) modulations during the N2 time window between 240 and 370 ms were linked to image classification. N2 activity reflected two distinct components – an early N2 (240-290 ms) and a late N2 (290-370 ms) – that showed different patterns of responses to 2D and 3D input and differential sensitivity to 3D object structure. The results revealed that stereo input modulates the neural correlates of 3D object shape. We suggest that this reflects differential perceptual processing of object shape under conditions of stereo or mono input. These findings challenge current theories that attribute no functional role for stereo input during 3D shape perception.

Publisher

SAGE Publications

Subject

Physiology (medical),General Psychology,Experimental and Cognitive Psychology,General Medicine,Neuropsychology and Physiological Psychology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3