Shared timing variability in eye and finger movements increases with interval duration: Support for a distributed timing system below and above one second

Author:

Karampela Olympia1,Holm Linus1,Madison Guy1

Affiliation:

1. Department of Psychology, University of Umeå, Umeå, Sweden

Abstract

The origins of the ability to produce action at will at the hundreds of millisecond to second range remain poorly understood. A central issue is whether such timing is governed by one mechanism or by several different mechanisms, possibly invoked by different effectors used to perform the timing task. If two effectors invoke similar timing mechanisms, then they should both produce similar variability increase with interval duration (interonset interval) and thus adhere to Weber's law (increasing linearly with the duration of the interval to be timed). Additionally, if both effectors invoke the same timing mechanism, the variability of the effectors should be highly correlated across participants. To test these possibilities, we assessed the behavioural characteristics across fingers and eyes as effectors and compared the timing variability between and within them as a function of the interval to be produced (interresponse interval). Sixty participants produced isochronous intervals from 524 to 1431 ms with their fingers and their eyes. High correlations within each effector indicated consistent performance within participants. Consistent with a single mechanism, temporal variability in both fingers and eyes followed Weber's law, and significant correlations between eye and finger variability were found for several intervals. These results can support neither the single clock nor the multiple clock hypotheses but instead suggest a partially overlapping distributed timing system.

Funder

Svenska Forskningsrådet Formas

Publisher

SAGE Publications

Subject

Physiology (medical),General Psychology,Experimental and Cognitive Psychology,General Medicine,Neuropsychology and Physiological Psychology,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3