Affiliation:
1. Department of Psychology, University of Tübingen, Baden-Württemberg, Germany
Abstract
In distributional semantics models (DSMs) such as latent semantic analysis (LSA), words are represented as vectors in a high-dimensional vector space. This allows for computing word similarities as the cosine of the angle between two such vectors. In two experiments, we investigated whether LSA cosine similarities predict priming effects, in that higher cosine similarities are associated with shorter reaction times (RTs). Critically, we applied a pseudo-random procedure in generating the item material to ensure that we directly manipulated LSA cosines as an independent variable. We employed two lexical priming experiments with lexical decision tasks (LDTs). In Experiment 1 we presented participants with 200 different prime words, each paired with one unique target. We found a significant effect of cosine similarities on RTs. The same was true for Experiment 2, where we reversed the prime-target order (primes of Experiment 1 were targets in Experiment 2, and vice versa). The results of these experiments confirm that LSA cosine similarities can predict priming effects, supporting the view that they are psychologically relevant. The present study thereby provides evidence for qualifying LSA cosine similarities not only as a linguistic measure, but also as a cognitive similarity measure. However, it is also shown that other DSMs can outperform LSA as a predictor of priming effects.
Funder
Deutsche Forschungsgemeinschaft
Subject
Physiology (medical),General Psychology,Experimental and Cognitive Psychology,General Medicine,Neuropsychology and Physiological Psychology,Physiology
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献