The Integration of Stimulus Dimensions in the Perception of Music

Author:

Prince Jon B.1

Affiliation:

1. School of Psychology, Murdoch University, Murdoch, WA, Australia

Abstract

A central aim of cognitive psychology is to explain how we integrate stimulus dimensions into a unified percept, but how the dimensions of pitch and time combine in the perception of music remains a largely unresolved issue. The goal of this study was to test the effect of varying the degree of conformity to dimensional structure in pitch and time (specifically, tonality and metre) on goodness ratings and classifications of melodies. The pitches and durations of melodies were either presented in their original order, as a reordered sequence, or replaced with random elements. Musically trained and untrained participants (24 each) rated melodic goodness, attending selectively to the dimensions of pitch, time, or both. Also, 24 trained participants classified whether or not the melodies were tonal, metric, or both. Pitch and temporal manipulations always influenced responses, but participants successfully emphasized either dimension in accordance with instructions. Effects of pitch and time were mostly independent for selective attention conditions, but more interactive when evaluating both dimensions. When interactions occurred, the effect of either dimension increased as the other dimension conformed more to its original structure. Relative main effect sizes (| pitch η2 – time η2 |) predicted the strength of pitch–time interactions (pitch × time η2); interactions were stronger when main effect sizes were more evenly matched. These results have implications for dimensional integration in several domains. Relative main effect size could serve as an indicator of dimensional salience, such that interactions are more likely when dimensions are equally salient.

Publisher

SAGE Publications

Subject

Physiology (medical),General Psychology,Experimental and Cognitive Psychology,General Medicine,Neuropsychology and Physiological Psychology,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3