The serial nature of the masked onset priming effect revisited

Author:

Mousikou Petroula12,Coltheart Max2

Affiliation:

1. Department of Psychology, Royal Holloway, University of London, Egham, UK

2. ARC Centre of Excellence in Cognition and its Disorders (CCD), and Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia

Abstract

Reading aloud is faster when target words/nonwords are preceded by masked prime words/nonwords that share their first sound with the target (e.g., s ave-SINK) compared to when primes and targets are unrelated to each other (e.g., farm-SINK). This empirical phenomenon is the masked onset priming effect (MOPE) and is known to be due to serial left-to-right processing of the prime by a sublexical reading mechanism. However, the literature in this domain lacks a critical experiment. It is possible that when primes are real words their orthographic/phonological representations are activated in parallel and holistically during prime presentation, so any phoneme overlap between primes and targets (and not just initial-phoneme overlap) could facilitate target reading aloud. This is the prediction made by the only computational models of reading aloud that are able to simulate the MOPE, namely the DRC1.2.1, CDP+, and CDP++ models. We tested this prediction in the present study and found that initial-phoneme overlap ( b lip-BEST), but not end-phoneme overlap ( flat-BEST), facilitated target reading aloud compared to no phoneme overlap ( junk-BEST). These results provide support for a reading mechanism that operates serially and from left to right, yet are inconsistent with all existing computational models of single-word reading aloud.

Publisher

SAGE Publications

Subject

Physiology (medical),General Psychology,Experimental and Cognitive Psychology,General Medicine,Neuropsychology and Physiological Psychology,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3