Ensemble-based machine learning application for lithofacies classification in a pre-salt carbonate reservoir, Santos Basin, Brazil
Author:
Affiliation:
1. Center for Petroleum Studies, State University of Campinas, Campinas, Sao Paulo, Brazil
2. Delft Inversion, Delft, The Netherlands
3. Geoscience Institute, State University of Campinas, Campinas, Sao Paulo, Brazil
Funder
EPIC – Energy Production Innovation Center
FAPESP – São Paulo Research Foundation
Equinor Brazil
ANP
Publisher
Informa UK Limited
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering,General Chemistry
Link
https://www.tandfonline.com/doi/pdf/10.1080/10916466.2022.2143813
Reference24 articles.
1. Facies and diagenesis distribution in an Aptian pre-salt carbonate reservoir of the Santos Basin, offshore Brazil: A comprehensive quantitative approach
2. An incomplete correlation between pre-salt topography, top reservoir erosion, and salt deformation in deep-water Santos Basin (SE Brazil)
3. Fault and fracture study by incorporating borehole image logs and supervised neural network applied to the 3D seismic attributes: a case study of pre-salt carbonate reservoir, Santos Basin, Brazil
4. A machine learning approach to facies classification using well logs
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning-based classification of petrofacies in fine laminated limestones;Anais da Academia Brasileira de Ciências;2024
2. An ensemble-based machine learning solution for imbalanced multiclass dataset during lithology log generation;Scientific Reports;2023-12-07
3. Curvature analysis and its correlation with faults and fractures in presalt carbonates, Santos Basin, Brazil;Marine and Petroleum Geology;2023-12
4. Utilizing integrated artificial intelligence for characterizing mineralogy and facies in a pre-salt carbonate reservoir, Santos Basin, Brazil, using cores, wireline logs, and multi-mineral petrophysical evaluation;Geoenergy Science and Engineering;2023-12
5. Identifying lithofacies types by boosting algorithm and resampling technique: a case study of deep-water submarine fans in an oil field in West Africa;Petroleum Science and Technology;2023-09-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3