Application of novel ANFIS-PSO approach to predict asphaltene precipitation
Author:
Affiliation:
1. Department of Chemical and Petroleum Engineering, Sharif University of Technology, Iran
2. Department of Petroleum Engineering, Petroleum University of Technology, Iran
3. Department of Basic Science, Petroleum University of Technology, Iran
Publisher
Informa UK Limited
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering,General Chemistry
Link
https://www.tandfonline.com/doi/pdf/10.1080/10916466.2017.1411948
Reference17 articles.
1. Genetic optimization of neural network and fuzzy logic for oil bubble point pressure modeling
2. Phase equilibrium modeling of semi-clathrate hydrates of seven commonly gases in the presence of TBAB ionic liquid promoter based on a low parameter connectionist technique
3. Prediction carbon dioxide solubility in presence of various ionic liquids using computational intelligence approaches
4. Application of LSSVM strategy to estimate asphaltene precipitation during different production processes
5. Modeling Asphaltene Precipitation Under Gas Injection and Pressure Depletion Conditions
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Connectionist Models for Asphaltene Precipitation Prediction by n-Alkane Titration─Pressure and Crude Oil Properties Considered;Industrial & Engineering Chemistry Research;2023-08-18
2. A novel experimental study on inhibition of asphaltene deposition;Petroleum Science and Technology;2022-09-04
3. Development of Artificial Intelligence Methods for Determination of Methane Solubility in Aqueous Systems;International Journal of Chemical Engineering;2022-07-12
4. Asphaltene induced changes in rheological properties: A review;Fuel;2022-05
5. Hybrid mathematical modelling of three-phase flow in porous media: Application to water-alternating-gas injection;Journal of Natural Gas Science and Engineering;2021-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3