Existance uniqueness and regularity of classical solutions of the mullins—sekerka problem
Author:
Affiliation:
1. a Department of mathematics , University of Pittsburgh , Pittsburgh , 15260 , USA
2. c Department of mathematics , Suzhou university , Suzhou, 215006, China
Publisher
Informa UK Limited
Subject
Applied Mathematics,Analysis
Link
https://www.tandfonline.com/doi/pdf/10.1080/03605309608821243
Reference14 articles.
1. Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations
2. G. Caginalp & X.Chen, Convergence of solution of the phase-field equations to solutions of the sharp interface model, to apper in Euro J.Appl. Math
3. J.W. Cahn, C.M. Elliott, & A. Novic-Cohen, The cahn-Hilliard equation with concentration depented mobility:Motion by minus Laplacian of the mean curvature,preprint
4. The Hele-Shaw problem and area-preserving curve-shortening motions
Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A structure-preserving finite element method for the multi-phase Mullins–Sekerka problem with triple junctions;Numerische Mathematik;2024-06-14
2. The Mullins–Sekerka problem via the method of potentials;Mathematische Nachrichten;2024-02-23
3. A Rapid Numerical Method for the Mullins–Sekerka Flow with Application to Contact Angle Problems;Journal of Scientific Computing;2024-02-13
4. A structure preserving front tracking finite element method for the Mullins–Sekerka problem;Journal of Numerical Mathematics;2022-03-23
5. Sharp Interface Limit of Stochastic Cahn-Hilliard Equation with Singular Noise;Potential Analysis;2022-01-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3