Deep multistage multi-task learning for quality prediction of multistage manufacturing systems
Author:
Affiliation:
1. The School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, Arizona
2. Procter and Gamble Company, Cincinnati, Ohio
Funder
Division of Civil, Mechanical and Manufacturing Innovation
Division of Mathematical Sciences
Publisher
Informa UK Limited
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Strategy and Management,Safety, Risk, Reliability and Quality
Link
https://www.tandfonline.com/doi/pdf/10.1080/00224065.2021.1903822
Reference53 articles.
1. State Space Modeling of Variation Propagation in Multistation Machining Processes Considering Machining-Induced Variations
2. Visualizing the effects of predictor variables in black box supervised learning models
3. Diagnosis of Multiple Fixture Faults in Panel Assembly
4. Bak Ir, B. İ. Batmaz, F. Güntürkün, İ. İpekçi, G. Köksal, and N. Özdemirel. 2006. Defect cause modeling with decision tree and regression analysis. World Academy of Science, Engineering and Technology 24:1–4.
5. Large-Scale Machine Learning with Stochastic Gradient Descent
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machining quality prediction of complex thin-walled parts using multi-task dual domain adaptive deep transfer learning;Advanced Engineering Informatics;2024-10
2. A Partial Domain Generalization Method for Modeling Multiple Multistage Manufacturing Processes;IISE Transactions;2024-09-13
3. Deep Koopman-Based Control of Quality Variation in Multistage Manufacturing Systems;2024 American Control Conference (ACC);2024-07-10
4. Statistical Process Monitoring from Industry 2.0 to Industry 4.0: Insights into Research and Practice;Technometrics;2024-04-15
5. Knowledge distillation-based information sharing for online process monitoring in decentralized manufacturing system;Journal of Intelligent Manufacturing;2024-03-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3