Effect of relative density on the compressive properties of Ti6Al4V diamond lattice structures with shells
Author:
Affiliation:
1. School of Mechanical and power Engineering, Nanjing Tech University, Nanjing, China
2. Jiangsu Key Lab of Design and Manufacture of Extreme Pressure Equipment, Nanjing, China
Publisher
Informa UK Limited
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science,General Mathematics,Civil and Structural Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/15376494.2021.1893418
Reference40 articles.
1. Additive Manufacturing of Customized Metallic Orthopedic Implants: Materials, Structures, and Surface Modifications
2. Mechanical properties and energy absorption capabilities of functionally graded lattice structures: Experiments and simulations
3. Influence of unit cell pose on the mechanical properties of Ti6Al4V lattice structures manufactured by selective laser melting
4. Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology
5. RETRACTED: Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Compression behavior of 316L diamond lattice structures fabricated via additive manufacturing with variable cell sizes;Mechanics of Materials;2024-11
2. Research on the shear band suppression mechanism in strut-based lattice structures by oblique graded design;Mechanics of Advanced Materials and Structures;2024-08-27
3. Enhanced orthopedic implant design for transfemoral amputation incorporating a honeycomb structure technology;Mechanics of Advanced Materials and Structures;2024-08-24
4. Compression properties and energy absorption of Gyroid lattice cylindrical shells filled thin-walled tubes fabricated by selective laser melting;Mechanics of Advanced Materials and Structures;2024-07-09
5. Enhanced compressive mechanical properties of different topological lattice structures fabricated by additive manufacturing;Mechanics of Advanced Materials and Structures;2024-07-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3