Affiliation:
1. University of Warwick, Coventry, UK
Abstract
Decision by sampling (DbS) is a theory about how our environment shapes the decisions that we make. Here, I review the application of DbS to risky decision making. According to classical theories of risky decision making, people make stable transformations between outcomes and probabilities and their subjective counterparts using fixed psychoeconomic functions. DbS offers a quite different account. In DbS, the subjective value of an outcome or probability is derived from a series of binary, ordinal comparisons with a sample of other outcomes or probabilities from the decision environment. In this way, the distribution of attribute values in the environment determines the subjective valuations of outcomes and probabilities. I show how DbS interacts with the real-world distributions of gains, losses, and probabilities to produce the classical psychoeconomic functions. I extend DbS to account for preferences in benchmark data sets. Finally, in a challenge to the classical notion of stable subjective valuations, I review evidence that manipulating the distribution of attribute values in the environment changes our subjective valuations just as DbS predicts.
Subject
Physiology (medical),General Psychology,Experimental and Cognitive Psychology,General Medicine,Neuropsychology and Physiological Psychology,Physiology
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献