Dissecting the Fine Details of Assembly of aT = 3 Phage Capsid

Author:

Stockley P. G.1,Ashcroft A. E.1,Francese S.1,Thompson G. S.1,Ranson N. A.1,Smith A. M.1,Homans S. W.1,Stonehouse N. J.1

Affiliation:

1. Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK

Abstract

The RNA bacteriophages represent ideal model systems in which to probe the detailed assembly pathway for the formation of aT = 3 quasi-equivalent capsid. For MS2, the assembly reaction can be probedin vitrousing acid disassembled coat protein subunits and a short (19 nt) RNA stem-loop that acts as the translational operator of the replicase gene and leads to sequence-specific sequestration and packaging of the cognate phage RNAin vivo. Reassembly reactions can be initiated by mixing these components at neutral pH. The molecular basis of the sequence-specific RNA–protein interaction is now well understood. Recent NMR studies on the protein demonstrate extensive mobility in the loops of the polypeptide that alter their conformations to form the quasi-equivalent conformers of the final capsid. It seems reasonable to assume that RNA binding results in reduction of this flexibility. However, mass spectrometry suggests that these RNA–protein complexes may only provide one type of quasi-equivalent capsid building block competent to form five-fold axes but not the full shell. Work with longer RNAs suggests that the RNA may actively template the assembly pathway providing a partial explanation of how conformers are selected in the growing shell.

Funder

Leverhulme Trust

Publisher

Hindawi Limited

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3