The Role of Cell Motility in Metastatic Cell Dominance Phenomenon: Analysis by a Mathematical Model

Author:

Kolobov A. V.1,Polezhaev A. A.1,Solyanik G. I.2

Affiliation:

1. P.N. Lebedev Physical Institute, Leninsky prosp. 53, 117924 Moscow, Russia

2. R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, Vasilkovskaya 45, 252022 Kiev, Ukraine

Abstract

Metastasis is the outcome of several selective sequential steps where one of the first and necessary steps is the progressive overgrowth or dominance of a small number of metastatic cells in a tumour. In spite of numerous experimental investigations concerning the growth advantage of metastatic cells, the mechanisms resulting in their dominance are still unknown. Metastatic cell overgrowth occurs even if doubling time of the metastatic subpopulation is shorter than that of all others subpopulations in a heterogeneous tumour. In order to examine the hypothesis that under conditions of competition of cell subpopulations for common substrata cell motility of the slow-growing subpopulation can result in its dominance in a heterogeneous tumour, a mathematical model of heterogeneous tumour growth is suggested. The model describes two cell subpopulations which can grow with different rates and transform into the resting state depending on the concentration of the substrate consumed by both subpopulations. The slow-growing subpopulation is assumed to be motile. In numerical simulations it is shown that this subpopulation is able to overgrow the other one. The dominance phenomenon (resulting from random cell motion) depends on the motility coefficient in a threshold manner: in a heterogeneous tumour the slow-dividing motile subpopulation is able to overgrow its non-motile counterparts if its motility coefficient exceeds a certain threshold value. Computations demonstrate independence of the motile cells overgrowth from the initial tumour composition.

Funder

Russian Foundation for Basic Research

Publisher

Hindawi Limited

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3