Mathematical Modelling of Angiogenesis in Wound Healing: Comparison of Theory and Experiment

Author:

Byrne H. M.1,Chaplain M. A. J.2,Evans D. L.3,Hopkinson I.3

Affiliation:

1. School of Mathematical Science, University of Nottingham, Nottingham NG7 2RD, UK

2. Department of Mathematics, University of Dundee, Dundee DD1 4HN, UK

3. Department of Osteoarticular Pathology, University of Manchester, Manchester MI3 9PL, UK

Abstract

In this paper we present a simple mathematical model for angiogenesis in wound healing and then compare the results of theoretical predictions from computer simulations with actual experimental data. Numerical simulations of the model equations exhibit many of the characteristic features of wound healing in soft tissue. For example, the steady propagation of the wound healing unit through the wound space, the development of a dense band of capillaries near the leading edge of the unit, and the elevated vessel density associated with newly healed wounds, prior to vascular remodelling, are all discernible from the simulations. The qualitative accuracy of the initial model is assessed by comparing the numerical results with independent clinical measurements that show how the surface area of a range of wounds changes over time. The model is subsequently modified to include the effect of vascular remodelling and its impact on the spatio-temporal structure of the vascular network investigated. Predictions are made concerning the effect that changes in physical parameters have on the healing process and also regarding the manner in which remodelling is initiated.

Publisher

Hindawi Limited

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3