Affiliation:
1. Department of Computer Science, University of Memphis, Memphis, TN 38152, USA
Abstract
In this paper we have proposed a novel amplitude suppression algorithm for EEG signals collected during epileptic seizure. Then we have proposed a measure of chaoticity for a chaotic signal, which is somewhat similar to measuring sensitive dependence on initial conditions by measuring Lyapunov exponent in a chaotic dynamical system. We have shown that with respect to this measure the amplitude suppression algorithm reduces chaoticity in a chaotic signal (EEG signal is chaotic). We have compared our measure with the estimated largest Lyapunov exponent measure by the largelyap function, which is similar to Wolf's algorithm. They fit closely for all but one of the cases. How the algorithm can help to improve patient specific dosage titration during vagus nerve stimulation therapy has been outlined.
Funder
National Science Foundation
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献