Chemically Induced Myelinopathies

Author:

Gemert Marciavan1,Killeen James2

Affiliation:

1. Charles, Conn, & van Gemert, Charlotte Hall, Maryland, USA

2. Ricerca, Inc., Painesville, Ohio, USA

Abstract

The diverse, structurally unrelated chemicals that cause toxic myelinopathies have been investigated and can be categorized into two types of primary demyelinators. Some demyelinating chemicals seem to leave intact the myeli-nating cells (oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system), while others damage the myelinating cells as well as the myelin. The significance between the two is that with the myelinating cells still in tact, repair of the myelin sheath can occur. However, if the myelinating cells are destroyed, repair and reversal of the neuropathy may not occur. Histologically, these chemicals produce an edema of the white matter of the brain, and in some cases the peripheral nervous system, that appears spongy by light microscopy. By electron microscopy, vacuoles can be seen in the myelin surrounding axons. These vacuoles are characterized as fluid-filled separations (splitting) of myelin lamellae at the intraperiod line. In some cases these vacuoles can degenerate further to full demyelination, affecting conduction through those axons. Regeneration of the myelin layers can occur, and in some cases occurs at the same time other axons are undergoing toxic demyelination. Several of these chemicals, however, have been shown to increase cerebrospinal fluid pressure in the brain, optic nerve, and spinal cord, and/or intraneuronal pressure in the perineurium surrounding the axons in the peripheral nervous system. This increased pressure has been correlated with decreased conduction capacity through the axon, ischemia to the neuronal tissue from decreased blood flow because of pressure against the blood vessels, and, if unrelieved, permanent axonal damage. Several of these chemicals havebeen shown to inhibit oxidative phosphorylation, while others uncouple oxidative phosphorylation. One chemical appears to inhibit an enzyme critical to cholesterol synthesis, thus destabilizing myelin. Another hypothesis for a mechanism of action may be in the ability of these compounds to alter membrane permeability.

Publisher

SAGE Publications

Subject

Toxicology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3