Assays for Photocarcinogenesis: Relevance of Animal Models

Author:

Forbes P. Donald1,Sambuco Christopher P.1

Affiliation:

1. Argus Research Laboratories, Inc., Pennsylvania, USA

Abstract

In the three and a half decades since the first published reports of squamous cell carcinomas in the skin of hairless mice exposed to ultraviolet radiation, this animal model has been developed and utilized extensively in basic and applied photobiology. Quantitative aspects of photocarcinogenesis had been investigated initially in haired mice; subsequently, the discipline of photoimmunology has developed largely on the basis of information derived from haired animals. Classical selective breeding methods, a few fortuitous mutations along the way, and the advent of genetic engineering have all enhanced the utility of the laboratory animal models. The benefits have included advances in our understanding of many influences on photocarcinogenesis such as genetic diversity, animal age, epidermal DNA damage and repair, wavelength dependency (action spectrum), ultraviolet radiation dose and its delivery, interactions with chemicals, and nutrition. As in other fields of basic and biomedical research, photobiological data have not been considered journalistically newsworthy or particularly contentious until they acquired potential economic impact. Thus, photocarcinogenesis became a more familiar word (at least along the Washington Beltway) when stratospheric ozone first appeared to be threatened by chlorofluorocarbons, and trends in photocarcinogenesis seemed less arcane when it appeared that the trends might be modified by consumer products and pharmaceuticals. The greatest challenge has not been in finding imaginative ways to exploit the models and to push the frontiers of science, but rather has been the uncertainty about quantitatively extrapolating the findings to humans. Research models would hardly be useful if they were not different from people (i.e., smaller, quicker to respond, shorter lived), and that fact encompasses differences in anatomy, physiology, metabolism, surface-to-weight ratios, etc. Selected examples from photomedicine (e.g., chronic solar damage, occupational exposure to tar, psoriasis phototherapy) tend to confirm that several basic principles about photocarcinogenesis are shared by man and mouse; other risk assessments await development and refinement, or remain to be corrected by experience.

Publisher

SAGE Publications

Subject

Toxicology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photosafety Assessment;A Comprehensive Guide to Toxicology in Nonclinical Drug Development;2024

2. Photosafety Assessment;A Comprehensive Guide to Toxicology in Nonclinical Drug Development;2017

3. Development and validation of a new transgenic hairless albino mouse as a mutational model for potential assessment of photocarcinogenicity;Mutation Research/Genetic Toxicology and Environmental Mutagenesis;2015-09

4. Photosafety;A Comprehensive Guide to Toxicology in Preclinical Drug Development;2013

5. Phototoxicology;General and Applied Toxicology;2009-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3