A Neural Network System for Fault Prediction in Pipelines by Acoustic Emission Techniques

Author:

Noseda Francesco1ORCID,Ribeiro Marnet Luiza2ORCID,Carlim Carlos2ORCID,Rennó Costa Luiz2ORCID,de Moura Junior Natanael2ORCID,Pereira Calôba Luiz2ORCID,Soares Sérgio Damasceno3ORCID,Clarke Thomas4ORCID,Callegari Jacques Ricardo4

Affiliation:

1. Applied Mathematics Department, IM-UFRJ, Rio de Janeiro, Brazil

2. Signal Processing Laboratory, COPPE-UFRJ, Rio de Janeiro, Brazil

3. Petrobras Research Center, CENPES-PETROBRAS, Rio de Janeiro, Brazil

4. Physical Metallurgy Laboratory, DEMET-UFRGS, Porto Alegre, Brazil

Funder

PETROBRAS CENPES

Publisher

Informa UK Limited

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference19 articles.

1. Signal and model-based fault detection for aircraft systems

2. Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection

3. Fault detection and other time series opportunities in the petroleum industry

4. A. Khodabakhsh, I. Ari, and M. Bakir, ArXiv:1705.04583 (2017).

5. Pipeline Incident 20 Year Trends, PHMSA, https://www.phmsa.dot.gov/data-and-statistics/pipeline/pipeline-incident-20-year-trends (accessed 2018)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3