Effects of H2 and electrochemical reducing power on metabolite production by Clostridium acetobutylicum KCTC1037

Author:

Jeon Boyoung1,Yi Junyeong1,Park Doohyun1

Affiliation:

1. Department of Chemical and Biological Engineering, Seokyeong University, Seoul, Korea

Abstract

Abstract A conventional fermenter (CF), a single-cathode fermenter (SCF), and a double-cathode fermenter (DCF) were employed to evaluate and compare the effects of H2 and electrochemical reducing power on metabolite production by Clostridium acetobutylicum KCTC1037. The source of the external reducing power for CF was H2, for the SCF was electrochemically reduced neutral red-modified graphite felt electrode (NR-GF), and for the DCF was electrochemically reduced combination of NR-GF and platinum plate electrodes (NR-GF/PtP). The metabolites produced from glucose or CO2 by strain KCTC1037 cultivated in the DCF were butyrate, ethanol, and butanol, but ethanol and butanol were not produced from glucose or CO2 by strain KCTC1037 cultivated in the CF and SCF. It is possible that electrochemically reduced NR-GF/PtP is a more effective source of internal and external reducing power than H2 or NR-GF for strain KCTC1037 to produce metabolites from glucose and CO2. This research might prove useful in developing fermentation technology to actualize direct bioalcohol production of fermentation bacteria from CO2.

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metabolic engineering of carbon and redox flow in the production of small organic acids;Journal of Industrial Microbiology and Biotechnology;2015-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3