Identification of the targets of HbEIN3/EILs in genomic wide in Hevea brasiliensis

Author:

Wang Qichao1,Xu Gang2,Zhai Jinling1,Yuan Hongmei1,Huang Xi1

Affiliation:

1. Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, P. R. China

2. School of Life Sciences, Tsinghua University, Beijing, China

Abstract

ABSTRACT EIN3/EILs are key regulators in ET signaling pathway. In this work, 4 members of EIN3/EILs of Hevea brasiliensis (HbEIN3/EILs) showed interaction with two F box proteins, HbEBF1 and HbEBF2. HbEIN3 located in nucleus and exhibited strong transcriptional activity. HbEIN3 was induced by ET treatment in C-serum, but not in B-serum of latex. HbEIN3/EILs bound to G-box cis-element. To globally search the potential targets of HbEIN3/EILs, genomic sequences of H. brasiliensis was re-annotated and an HCES (Hevea Cis-Elements Scanning) program was developed (www.h-brasiliensis.com). HCES scanning results showed that ET- and JA- responsive cis-elements distribute overlapping in gene promoters. 3146 genes containing G-box in promoters are potential targets of HbEIN3, including 41 genes involved in biosynthesis and drainage of latex, of which 7 rate-limiting genes of latex production were regulated by both ET and JA, suggesting that ET and JA signaling pathways coordinated the latex biosynthesis and drainage in H. brasiliensis. Abbreviations: ABRE: ABA responsive elements; bHLH: basic helix-loop-helix; COG: Orthologous Groups; DRE: dehydration response element; ERE: ethylene responsive element; ET: Ethylene; GO: Gene Ontology; HCES: Hevea Cis-Elements Scanning; JA: jasmonates; JRE: Jasmonate-responsive element; KEGG: Kyoto Encyclopedia of Genes and Genomes; NR: non-redundant database; PLACE: Plant Cis-acting Regulatory DNA Elements; qRT-PCR: quantitative real-time RT-PCR.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3